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Initial design and validation of baseline Observing System Simulation Experiments
(OSSEs) at NASA’s Global Modeling and Assimilation Office (GMAO) are described.
The OSSEs mimic the procedures used to analyze global observations for specifying
states of the atmosphere. As simulations, however, OSSEs are not only confined to
already existing observations and they provide a perfect description of the true state
being analyzed. These two properties of the simulations can be exploited to improve
both existing and envisioned observing systems and the algorithms to analyze them.
Preliminary to any applications, however, the OSSE framework must be adequately
validated.

This first version of the simulated observations is drawn from a 13 month sim-
ulation of nature produced by the European Center for Medium-Range Weather
Forecasts. These observations include simulated errors of both instruments and
representativeness. Since the statistics of analysis and forecast errors are partially
determined by these observational errors, their appropriate modelling can be crucial
for validating the realism of the OSSE. That validation is performed by comparing
the statistics of the results of assimilating these simulated observations for one sum-
mer month compared with the corresponding statistics obtained from assimilating
real observations during the same time of year. The assimilation system is the three-
dimensional variational analysis (GSI) scheme used at both the National Centers for
Environmental Prediction and GMAO. Here, only statistics concerning observation
innovations or analysis increments within the troposphere are considered for the
validation.

In terms of the examined statistics, the OSSE is validated remarkably well, even
with some simplifications currently employed. In order to obtain this degree of suc-
cess, it was necessary to employ horizontally correlated observation errors for both
atmospheric motion vectors and some satellite observed radiances. The simulated
observations with added observation errors appear suitable for some initial OSSE
applications. Copyright c© 2012 Royal Meteorological Society
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1. Introduction

An observing system simulation experiment (OSSE) is a
numerical experiment conducted with a data-assimilation
system (DAS) and numerical prediction model that
traditionally uses simulated rather than real observations.
These are drawn from some dataset representing the states
to be observed. For an OSSE applied to the atmosphere, this
is most appropriately a temporal sequence of atmospheric
fields generated by a sufficiently realistic simulation model,
termed a ‘nature run’ (NR). The simulated observations are
then ingested by the DAS. Various metrics are applied to
quantify the accuracy of the analyses produced, particularly
standard ones measuring fits to observations and forecast
skill. The impacts of various configurations of the observing
system can then be compared. Unlike an observing system
experiment (OSE) conducted with real observations, an
OSSE is not limited to using observations that currently
exist.

OSSEs are most often employed to estimate quantitatively
the potential improvements in climate analysis and weather
prediction to be gained by augmenting the present
atmospheric observing system with additional envisioned
types of observations that do not yet exist. In particular,
the utilities of competing designs of proposed observing
systems can be compared within the context of modern
data-assimilation systems. OSSEs can also be used to explore
some otherwise elusive characteristics of an already existing
observing system such as, for example, its analysis error
statistics as in Errico et al. (2007a). Essentially, these latter
goals are achievable because in the OSSE framework a dataset
representing the atmosphere or ocean is precisely known,
unlike the case of the real atmosphere, thereby allowing an
explicit and precise determination of analysis errors.

Before conducting an OSSE to investigate proposed
observing systems, there are several reasons to conduct
baseline experiments simulating a current observing
system. Most importantly, as a simulation, any particular
OSSE framework should first be validated by comparing
corresponding metrics of the DAS and subsequent forecasts
applied to equivalent real observations (termed ‘GDAS’
here) in order to establish its credibility. Most proposed
observing systems are intended to be augmentations of
the existing (baseline) systems that they are supposed to
improve, so a baseline validation is especially relevant.
Many past OSSEs have been criticized privately because their
validations have been insufficient or even absent, sometimes
resulting in their gross misinterpretation. The complexity of
modern data-assimilation systems, cost of modern observing
systems and importance of accurate state estimation require
that OSSEs be carefully validated, based explicitly on
comparisons of metrics applied to corresponding results
in real and simulated frameworks.

The GMAO OSSE development began as an offshoot
of what has been called the ‘Joint OSSE’, which was an
informal collaboration of several investigators in Europe
and the United States (Masutani et al., 2007). In particular,
the European Center for Medium-Range Weather Forecasts
(ECMWF) created a usefully realistic NR dataset for the
atmospheric OSSE community to use. Since then the GMAO
effort has evolved to become independent of the joint OSSE,
aside from use of this NR.

We begin with a description of the NR and our DAS in the
next section. This is followed by descriptions of the ways in

which observations and their associated errors are simulated
and validated. A sample of validation results is presented in
section 6. These are all in terms of background and analysis
fits and differences, with forecast metrics discussed in a
companion paper (Privé et al., 2012). A summary and plans
for further development are then offered.

2. The nature run and DAS

The ECMWF NR representing ‘truth’ for the OSSE is
provided by a 13 month forecast for the period 10 May
2005–31 May 2006. This uses the ECMWF operational
model from 2005 (version cy31r1) with resolution defined
by triangular spectral truncation at wavenumber 511 with 91
levels in the vertical above the surface (T511L91). It is a ‘free-
running’ solution, in the sense that the only information
provided about the real atmosphere, besides the model
equations, parametrization and initial conditions, are the
sea-surface temperature (SST) and sea-ice fraction provided
as lower boundary conditions. The latter are derived from
an analysis of real SST and sea-ice observations during that
period.

The NR datasets are provided on a reduced linear Gaussian
grid with fields defined at 512 latitudes and between 1024
and 18 longitudes, with the smaller numbers closer to the
poles. The vertical coordinate is a hybrid one: terrain-
following sigma near the surface, pressure above 150 hPa
and a blending of the two in between. The simulated fields
are available every 3 h for both prognostic and diagnostic
model fields. In several aspects, this NR appears adequately
realistic (Reale et al., 2007), but some shortcomings are
also apparent (e.g. too few high-level clouds, as shown in
McCarty et al., 2012).

The DAS used here is an upgraded version of that
described by Rienecker et al. (2008). It includes the Grid-
point Statistical Interpolation (GSI) scheme for three-
dimensional variational analysis originally developed at
NCEP (Wu et al., 2002; Kleist et al., 2009) and now
jointly developed with the GMAO (version 5.7.1). The
incremental analysis update of Bloom et al. (1996) is used
for enhanced dynamical balance. Both real observation and
OSSE assimilation experiments are run with horizontal
resolution 0.5◦ latitude by 0.625◦ longitude. Atmospheric
fields are defined on 72 levels above the surface using the
same hybrid coordinate (denoted as η) as in the NR, but with
a different blending of pressure and sigma levels specified.
All results shown in terms of fields will be on η-surfaces
denoted in terms of what the corresponding pressure surface
would be if the surface pressure were 1000 hPa everywhere.
Radiative transfer calculations in GSI are performed using
release 1.2 of the Community Radiative Transfer Model
(CRTM; Han et al., 2006).

When the DAS is applied to either simulated or real
observations, it uses identically specified background-error
and observation-error statistics previously tuned for an
earlier version of the system applied to real data. The same
quality control and data-selection algorithms are also used.
The validation here thereby determines how well the OSSE
can match a real analysis using as similar a DAS as possible.

The assimilation model is version 5 of the Goddard
Earth Observing System model (GEOS–5) as used at the
GMAO (but not at NCEP; Rienecker et al., 2008). It uses a
finite-volume time-splitting algorithm for its dynamics (Lin,
2004), in contrast to the semi-Lagrangian, semi-implicit
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formulation in the ECMWF model. The parametrized
physics (Bacmeister et al., 2006) also differs from that at
either NCEP or ECMWF.

The OSSE validation is performed for the period 1–31
July 2005. The OSSE actually begins at 0000 UTC on 15
June 2005, however, to allow the spin-up of radiance
bias correction coefficients (Dee, 2005) and background
errors. The initial background fields are the result of a
2 day assimilation that itself begins with a real background
for 0000 UTC on 13 June 2005 but has as its observations
simulated rawinsondes drawn from every second latitude,
longitude and vertical level of the NR every 6 h, with
no observation errors added. These high-density, high-
accuracy observations are used to accelerate adjustment
of the background toward the NR state. Although the
subsequent 17-day spin-up period is short with respect
to the 1 month e-folding time employed for computing
the radiance bias-correction coefficients, this is deemed
sufficient because, unlike for real observations, the OSSE
simulated ones have no sources of large bias and all the
coefficients are initialized to spun-up values from previous
experiments that were only slightly less well tuned.

3. Simulation of observations

Observations are simulated by applying an appropriate
algorithm (an observation operator) to the NR fields at
instants in time. While it may seem attractive to begin
by simulating current observations in the most realistic
ways possible, this is not a generally prudent approach for
several reasons: (1) the fidelity of some realistically simulated
observations may be detrimentally affected by unrealism in
some aspect of the NR (e.g. as will occur if radiances are
computed using a good model for scattering by clouds but
the high-level NR clouds are deficient); (2) the most realistic
observation operators available may still be too physically
deficient ( e.g. although a radiance-scattering model may
generally describe cloud effects well, it may treat poorly
optically thin clouds that affect those radiance observations
actually retained by quality-control (QC) algorithms); (3)
information on a data type or spatial scale required by
a realistic observation operator may be absent from the
NR (e.g. the cloud microphysical properties required by a
radiation-scattering model); (4) the DAS may not consider
effectively some aspects of the observations that characterize
their realism, and thus great effort may be expended in
simulating complex aspects for which a much simpler
treatment may be adequate (as in the examples provided in
what follows); (5) some aspects of realism are expected to
have little impact on the time- and space-averaged metrics
to be provided either for this validation or for other studies
planned for the near-term, and thus have little importance at
this stage of development. Our approach has been to start by
using simple observation operators, adding more realism as
required to improve the validation of the OSSE framework.

When creating simulated observations for an OSSE, it is
useful to distinguish between the modelling of observational
signal and noise. The signal provides information that is
both interpretable and desirable to be retained by the DAS,
whereas any noise will be a source of error that the DAS
will tend to diminish. The latter includes gross errors,
which often, but not always, lead to data rejection by QC
algorithms, and also typically smaller errors of instruments
and representativeness that are less easily detected. Different

DAS may alter the partitioning between signal and noise;
e.g. when a DAS is changed from computing cloud-free
radiances using only assumed cloud-free observations to
actually computing the effects of clouds in order also
to retrieve cloud properties. The latter requires attention
to details of cloud effects, whereas the former essentially
considers clouds only as a source of error. It would
naturally be best if the observations were indeed simulated as
realistically as possible so that the products would be useful
for both present and future applications, independent of
what is presently considered as the signal. This approach
would require much greater expertise and attention to detail
than we can now offer, however, and would not be relevant
in the DAS available to us. That admission guides our
present distinction between signal and noise, with the latter
primarily treated as suitably tuned random errors to be
added.

3.1. Simulation of conventional observations

‘Conventional’ observations include all those not provided
to the GSI as measures of radiances. Specifically, these
include measurements by rawinsondes, dropsondes, pilot
balloons, aircraft (AIREP, PIREP, ASDAR and MDCRS),
wind profilers, Doppler radar (VAD) winds, ships, land
stations (for surface pressure only) and ocean buoys.
They also include winds estimated by tracking features
in geostationary satellite images of cloud or water
vapour (denoted collectively as ‘SATWND’) and by SSM/I
and QuikScat sea-surface winds (denoted collectively as
‘SSWND’ here). The operational version of GSI also
uses precipitation retrieved from satellite observations,
but since these have negligible impact on the metrics
used for validation here and insufficient validation of
instantaneous fields of NR precipitation has been conducted,
their use in the OSSE has been deferred. The only in situ
surface measurements considered by GSI are radiosonde
temperatures and surface pressures, meso-net surface
pressures and measurements by ships or buoys.

The location and time for each simulated conventional
observation are specified as those of the corresponding real
observation that was considered by the operational GMAO
DAS for that same date. The real data have been partially
thinned and quality-controlled and thus are devoid of many,
but not all, of the gross observational errors that generally
occur. By assigning locations and times of simulated data
in this way, several aspects of the spatial and temporal
distribution of these data are constrained to be identical to
those of real observations, with some important exceptions
described later.

The only observation operators used for the considered
conventional observations are spatial and temporal inter-
polations from the NR gridded fields to the observation
locations and times. Interpolations are bilinear in horizon-
tal distance, log-linear in vertical pressure and linear in time.
Surface observations are produced at the interpolated NR
topographic height or 10 m above that, depending on the
observation type.

Three aspects of conventional observations that may
be important but not critical are neglected. One is that
the locations of ‘significant-level’ radiosonde observations
are specified by the locations of the corresponding real
data rather than by applying the rules for reporting such
observations to the NR fields. Thus, data for significant-level
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reporting that would otherwise occur given the NR fields may
be absent, and vice versa. A second aspect is that locations
for wind observations determined by tracking features (e.g.
clouds) detected in real satellite imagery may be inconsistent
with the locations of such features in the NR. Thus, cloud-
track wind observations may be simulated where the NR
has no clouds. Third, the SSWND observations are simply
determined by horizontally and temporally interpolating
from the 10 m winds provided in the NR data set, without
reconsideration of momentum profiles in the vertical.

There are also some neglected aspects that are considered
unimportant. Locations of soundings (e.g. by rawinsondes)
are treated as being fixed to their initial locations (i.e. without
accounting for their drift). Observations of precipitation
rates are neglected because they have negligible impact on
the metrics presented here and the quality of their usefulness
is questionable even in the GDAS (Errico et al., 2007b).

3.2. Simulation of radiance observations

The baseline dataset includes brightness temperatures (Tb)
simulated for the HIRS/2 (on NOAA–14), HIRS/3 (on
NOAA–16,17) and AIRS (on AQUA) infrared (IR) sensors
and for the AMSU–A (on NOAA–15,16 and AQUA),
AMSU–B (on NOAA–15,16,17) and MSU (NOAA–14)
microwave (MW) sensors. GOES radiances, which have
been shown currently to have negligible impact in the
DAS, are not used in this GDAS or OSSE. At all observed
locations, vertical profiles of relevant fields are determined
by horizontal and temporal interpolation of fields on the
NR data levels. These are then passed to the CRTM. The
consequences of using a very similar radiative transfer
model to both simulate and assimilate the observations
are described in the next section.

The GSI thins the set of available radiance observation
locations for computational reasons concerning both the
CRTM and the conditioning of the DAS minimization
algorithm. This is accomplished by first dividing the area of
the globe into a set of approximately equal-area trapezoids
with lengths of sides ranging from 145–240 km, depending
on the instrument. For each trapezoid, instrument and
satellite considered, it selects observations for just one
location from the set of all observed locations within that
trapezoid. The selection is based on an estimate of what
may be ‘best’ in terms of the location, time and least
undesirable effects of clouds. For AIRS observations, the
selection algorithm also favours locations that are associated
with nearby AMSU–A observations in the same data report.
The CRTM is then used to simulate observations only at
these locations. The simulated radiance observations for
the OSSE are pre-thinned similarly to the way in which
GSI subsequently does so, but using trapezoids with sides
approximately 45 km, so that the GSI then still makes its own
data selection among the up to 25 simulated observations
provided to it.

Both the data selection and data QC algorithms in GSI
act to discard radiance observations suspected of being
adversely cloud-affected, since its CRTM algorithm treats all
radiative transfer as cloud-free. Many radiance observations
for channels with weighting functions that peak sufficiently
higher than the altitudes of presumed clouds, however, are
retained. The primary effect of these procedures is therefore
to reduce the numbers of assimilated observations, especially
in cloudy regions for lower-peaking channels. A minimum

requirement for the OSSE is to incorporate a similar cloud
effect so that realistic counts and spatial distributions of
observations are obtained for each instrument channel.

For all the reasons stated at the beginning of section 3,
at the current stage of development, this primary cloud
effect on IR radiances has been introduced in a simple
tunable manner. First, the existence of a significant cloud
effect at each observation location is determined by a simple
probabilistic function of the fractional areas of high, medium
and low-level cloud covers provided in the NR dataset.
These determinations employ tunable functions that allow
for the possibility of ‘holes’ in clouds and for adjustments
due to possible unrealism of the instantaneous fractional
cloud distributions in the NR. If a significant cloud is
specified to be at an observation location, it is treated as
a black body and the radiative transfer calculations are
performed with the cloud top as the radiatively effective
surface without the additional consideration of scattering
by clouds below. At most locations, this will result in cold
brightness temperatures for the affected channels, which will
be recognized by the QC as undesirable cloud effects. The
probabilistic function is crudely tuned to yield monthly-
mean counts of the GSI quality-accepted observations that
are similar to those obtained for real observations for each IR
channel. The same function, albeit with different parameters,
is used for all instruments. Further details are provided in
Appendix A.

A more subtle effect of clouds occurs when they are
optically thin with respect to a radiance calculation; i.e.
when they affect the radiative transfer but not in such a gross
way as to be detected by the QC. In this case, the difference
between the cloud-free CRTM calculation and the real
cloud-scattering result is interpreted by the GSI as an error
of representativeness. Such an error of representativeness
is also introduced using the OSSE simulation procedure,
but we do not claim that important characteristics of the
real and OSSE errors are similar. We do compensate for
some discrepancy, however, in the way additional simulated
observation errors are introduced in the OSSE.

Effects of precipitation on MW transmission are treated
analogously to cloud effects on IR transmission. In this way,
the GSI QC excludes consideration of MW observations in
regions of sufficiently strong precipitation. Details appear in
Appendix A.

For IR and especially MW radiances, the treatment of
surface emissivities in the created observations presents a
special problem. Emissivity modelling for real observations
has many uncertainties, exacerbated by poorly described
or unknown surface inhomogeneities (e.g. regarding soil
and vegetation properties). The CRTM in both the OSSE
simulations and GSI is provided with a vegetation-type
index (10 types) and vegetation fraction, snow depth and
temperature, soil moisture content and skin temperature.
The latter three quantities are provided by horizontally
interpolated values from the NR. The vegetation values
used for the OSSE observation simulation are taken as
the nearest-gridpoint values provided on an approximately
half-degree Cartesian grid and are similar but not identical
to those values provided in the GSI. Over water, the
10 m winds interpolated from that NR field are used
rather than recalculated winds derived from stability
profiles. The modelled emissivity used to simulate the
observations is therefore not identical to that used in the
GSI assimilation, but the difference is likely much less than
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the emissivity-responsible representativeness error implicit
when assimilating real observations. This discrepancy can be
ameliorated by adding a simulated representativeness error
to the OSSE observations, but only if the character of the real
error is sufficiently known. There is likely a spatially varying
but temporally correlated component to the real error (e.g.
due to seasonal variations of subgrid vegetation) for which
no error-modelling attempt has been made for the OSSE.
Presently MW channels strongly affected by the surface are
not used, so the lack of sufficient emissivity error in the
OSSE framework is somewhat moot here.

No attempt has been made to simulate error biases in
satellite observations explicitly. The biases for which we
know the characteristics are the same biases that the GSI
is designed to effectively remove. Since other biases are
presumably smaller but not sufficiently known, at this stage
of development there is little reason to simulate any biases.
The OSSE retains a radiance-bias correction in the DAS,
however, since the CRTM versions for simulating and
assimilating are not identical. As when assimilating real
observations, some of the innovation bias will actually be
due to background error bias but incorrectly attributed to
observation error bias and corrected as such. This radiance-
bias correction therefore also serves as a source of some
error that can occur in both OSSE and GDAS contexts.

4. Simulation of observation errors

The statistics of analysis errors are partly determined by
the statistics of observation errors, as revealed by the
fundamental DAS equations and as examined further by
Daley and Menard (1993). The observation errors can be
considered as sums of two distinct contributions: instrument
errors and representativeness errors. The first is absent from
the simulated observations because no physical instruments
are involved. The other, although partially present, is likely
diminutive for reasons offered below. If the OSSE is to
be validated by comparing measures of its behaviour with
corresponding results when assimilating real data, then
it is imperative to employ it with the same prescribed
background and observation-error covariances (respectively
B and R in the standard notation of Ide et al., 1997) and
to ensure that the simulated observations have errors with
statistics, especially covariances, similar to real ones. Only
under these conditions can a meaningful validation be
performed.

The representativeness errors have various sources. One
is the DAS’s limited representation of the true atmospheric
state in terms of a finite set of grid points or spatial
functions. The other consists of errors in formulations of the
physics relating what is observed to what is analyzed, most
notably errors in determining satellite-observed radiances
in terms of profiles of temperature, moisture, ozone, etc.
Both sources may be considered as arising from errors
in the forward models, including spatial interpolation
schemes and radiative transfer schemes applied in the
DAS. Some of this error is implicitly present within the
observations simulated for the OSSE, since the NR and DAS
represent the atmosphere differently. They also differ in
the values of some parameters used for radiative transfer.
The spatial resolutions of the NR and DAS, however, are
not extraordinarily different. Neither are the versions of the
CRTM applied to the NR and within the DAS. Variances
of the representativeness errors introduced implicitly in

this way should therefore be significantly smaller than the
corresponding variances present when real observations are
assimilated.

For the above reasons, errors are added to the
observations simulated from the NR. For each data type,
these are determined from random distributions that
may be horizontally, vertically or channel-correlated or
uncorrelated. The variances for these distributions depend
only on data type and pressure or channel (i.e. not
geographical location). They are determined by a tuning
procedure so that corresponding temporal variances of
observation innovations d = yo − H(xb), where yo are
observation values and H is a corresponding operator
that yields an estimate of y from the background-state
estimate xb, are matched in the OSSE and GDAS contexts.
This tuning assumes that any mismatch of d statistics
is due to inappropriate observation error. This is likely
the dominant cause for reasons previously presented, but
misapplication due to mismatched error statistics of xb

cannot be discounted. After the d statistics are tuned, other
metrics must be investigated to check the reasonableness of
the assumptions made about observation errors. The tuning
procedure is described in Appendix B and its success is
indicated in section 6. For the distributions of all explicitly
added errors, the means are zero, so no additional biases are
introduced.

We reasonably assume that the additional observational
errors in conventional, closely-spaced, significant-level
sounding data should be weakly correlated. For simplicity,
we use a Gaussian-shaped correlation function defined as

ρ(p1, p2) = exp

[
−0.5

{
RgTo(ln p1 − ln p2)

gLv

}2
]

,

where ρ is the correlation, p1 and p2 are any two pressure
levels, Rg here is the gas constant, To = 270 K is an
approximate tropospheric mean temperature, g here is the
acceleration of gravity and Lv is a vertical decorrelation
length-scale (500 m for wind and temperature and 180 m
for relative humidity).

For all AMSU, HIRS and MSU instruments, the added
errors have both uncorrelated and horizontally correlated
components. The horizontal structures of the correlations
are Gaussian, each prescribed by a length-scale L. The
fraction of total error variance contributed by the latter
is denoted ν. Both L and ν are tuned analogously to
the procedure for observation-error variances separately
for each instrument, satellite and channel. So, for these
instruments, no error correlations between channels are
assumed. From these parameters, global random correlated
fields are produced from which realizations of the errors are
horizontally interpolated. The random fields are generated
by projection of spherical harmonic functions defined using
random (complex) spectral coefficients. The desired spatial
Gaussianity is assured by constraining the expected power
spectrum of the latter to be given by the shape appearing
in Appendix C. The random coefficients themselves are
drawn from normal distributions of mean 0 and appropriate
variances.

For AIRS, being a hyper-spectral instrument, the explicitly
added observational errors are correlated between channels.
This is accomplished by creating horizontally random fields
as for the other radiance observation errors but instead
using these to define random coefficients for the principal
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components of the channel-error covariance matrix. The
latter is estimated from examination of observation
increment covariances obtained from an assimilation of real
data. The channel correlations resemble those appearing
in Bormann et al. (2010). No horizontal correlations are
considered because they appear small and are otherwise
difficult to tune in conjunction with the channel correlations.

Analogous to the treatment of AIRS, the added errors of
SATWNDS utilize principal components of an assumed
vertical covariance of observation errors. The vertical
correlations are defined as in (1) with Lv = 750 m. The
simultaneously vertically and horizontally correlated fields
are defined on a grid with high spatial resolution so that
when its random values are interpolated to observation
locations substantial variance is not lost due to averaging
of random numbers (e.g. if values for locations centred
between two points where the fields are randomly defined
with no correlation are determined by linear interpolation,
the resulting variance at those locations will be half that
of the random field defined on the grid). In the present
OSSE system, errors for the two wind components are
determined separately, using the same horizontal Gaussian-
shaped correlations as for radiances. The L and ν are
determined by tuning similar to that for radiances. Both
wind components use the same error parameters.

4.1. Tuned standard deviations for added observation errors

Examples of tuned standard deviations of the observation
errors explicitly added in the OSSE are presented in Figure 1
for four observation types. Also presented for each are the
square roots of corresponding elements of R specified in the
GSI. The values reported for the OSSE do not include the
implicit portions of representativeness errors that are due to
the differing NR and GDAS resolutions, etc.

The standard deviations for AMSU–A on NOAA–15-
added OSSE errors (Figure 1(a)) are approximately one
half of the GDAS error-table values. Similar ratios are
obtained for other satellite instruments, except for AIRS
for which one-third is a more typical ratio. For rawinsonde
values of Tv (Figure 1(b)), the ratios are close to one, with
minima of 0.79 at 700 and 250 hPa and maxima of 1.4
in the stratosphere. Ratios of rawinsonde values for wind
(Figure 1(c)) are also close to 1, with a maximum of 1.34
near the surface and minimum of 0.93 for p < 50 hPa.
For SATWND (Figure 1(d)), ratios range from 0.32 near
the surface to 0.48 for p < 200 hPa. For most conventional
observations not shown, the assigned ratio is close to 1,
except for surface marine and buoy observations, for which
ratios are near 0.5.

4.2. Tuned horizontal correlations for added observation
errors

Examples of the tuning parameters for L and ν for the
horizontally correlated components of the explicitly added
observation errors appear in Figure 2. For AMSU–A on
NOAA–15, values are presented only for the channels
actually used by the GSI. The SATWND values are those
tuned for GOES IR and visible winds, but are applied to
SATWND observations deduced from other geostationary
satellite images as well.

For AMSU–A, L (Figure 2(a)) increases from 320 to
610 km as the channel number increases (channel ten being

a slight exception). This increase also corresponds to an
increase of the height at which each channel’s weighting
function peaks. For channels 5–7, ν < 0.07 (Figure 2(b)),
indicating that negligible correlated error is added for these
channels. For other channels, however, 0.23 < g < 0.41,
with the largest value occurring for channel 4, which is most
affected by the Earth’s surface.

For SATWND, L (Figure 2(c)) is largest (450 km) near
the surface and a minimum (220 km) near 400 hPa. Values
of ν (Figure 2(d)) range from 0.24 at p = 850 hPa to 0.69
for p < 200 hPa. For p < 750 hPa, most of the added error
for SATWND is therefore horizontally correlated.

5. Validation metrics

The OSSE has been validated using many metrics. Only such
metrics as can also be obtained from the GDAS are examined
here. So, for example, scores of how well the OSSE analyses
compare with the (known) NR truth are deferred to a future
report because there is no corresponding truth for the GDAS.
Also, attention is focused on the troposphere rather than on
the surface, stratosphere or mesosphere. Other metrics or
portions of the atmosphere will be addressed in later reports.

For this baseline set of OSSE observations, parameters
used in the observation-error models have been selected
in an attempt to match particularly standard deviations of
both innovations and analysis increments in the OSSE with
corresponding ones in the GDAS. It is produced using the
same period, resolution and DAS, drawing from the same
set of real observations employed to determine observation
locations in the OSSE.

The part of the cost function that measures the misfit
between observations and implied background values is
denoted as

Jo = dTR−1d ,

where superscript ‘T’ denotes a transpose. In the GSI,
R is diagonal, so Jo is simply a sum of squares of the
innovations for each individual observation weighted by
the corresponding inverses of the assumed variances of the
observation errors.

Statistics of analysis increments are also examined. These
are determined as

xa − xb = Kd,

where xa is the analysis and K is the GSI approximation to the
Kalman gain matrix resulting from its iterative algorithm.
Thus, the analysis increments are weighted sums of the
innovations.

6. Results

All these results are evaluated from four times daily analysis
over the 31 days of July. Statistics are computed using global
averages unless specified otherwise.

6.1. Numbers of observations assimilated

By design, the numbers of observations of various types
actually assimilated within the OSSE after quality control
are very similar to the corresponding numbers in the GDAS.
Table 1 presents these numbers for indicated observation
types as averages per 6 h assimilation period for the month

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2012)



Observing-system Simulation Experiments

0 0.5 1 1.5
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Tb (K)
C

ha
nn

el

(a)

0 0.5 1 1.5

1
100
200
300
400
500
600
700
800
900

1000

Tv (K)

P
re

ss
ur

e,
 h

P
a

(b)

0 1 2 3

1
100
200
300
400
500
600
700
800
900

1000

U (m/s)

P
re

ss
ur

e,
 h

P
a

(c)

0 2 4 6 8

1
100
200
300
400
500
600
700
800
900

1000

U (m/s)

P
re

ss
ur

e,
 h

P
a

(d)

Figure 1. Comparison of standard deviations of the simulated observation errors explicitly added in the OSSE (dashed lines and open circles) with the
corresponding values (solid lines and filled circles) specified in the GSI. Values are shown for (a) Tb for AMSU–A on NOAA–15, (b) Tv for rawinsondes,
(c) wind components for rawinsondes and (d) SATWND.
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Figure 2. Tuned values for (a,c) the length-scales of horizontally correlated components of the explicitly added observation errors in the OSSE and (b,d)
the fractions of the total added error variance contributed by the horizontally correlated component. Values are for (a,b) AMSU–A on NOAA–15 and
(c,d) SATWND.

of July. The conventional observation category ‘Sondes’
includes rawinsondes, pibals and dropsondes.

For all conventional observation types, the corresponding
numbers differ by less than 4% because (1) a simulated
observation has been produced for every real observation
that has passed a preliminary quality-control check and

(2) no non-Gaussian gross errors have been added to
the simulated values. The corresponding numbers are not
necessarily identical because additional quality control is
performed during the assimilation procedure.

Unlike for the conventional observations, the OSSE
radiance observation counts depend on the algorithm used
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to introduce cloud and precipitation effects. As one set of
metrics of that algorithm’s performance, the mean numbers
of accepted observations per day as a function of channel
for AIRS appear in Figure 3. They are all within 10% of
each other, which is rather remarkable given the crude
way cloud effects are incorporated in the OSSE radiance
observations. For other satellite instruments, the degrees of
correspondence are similar.

A typical example of the geographical distribution of
simulated observations after data thinning and removal of
those identified by the DAS quality control as likely cloud-
affected is shown in the top panel of Figure 4. Specifically,
this is for channel 295 on AIRS–AQUA (corresponding to
channel 106 in the NCEP subset designation), for the 6 h
period centred on 1800 UTC, 12 July 2005. This channel is
potentially affected by clouds at any level, which explains
why observations are absent within patches that otherwise
are clearly within the observation swaths. The spatial density
of the observations outside these cloudy patches is reflective
of the satellite data thinning incorporated within GSI.

The result corresponding to the top panel of Figure 4
but for real observations appears in the bottom panel.
Observation locations in the two panels are not in one-to-
one correspondence. Even in cloud-free regions, the data
thinning will not choose identical observation locations
from the two datasets. Even if temporal and spatial means
of cloud distributions for the NR are entirely realistic,
the locations of clouds at any specific time may differ
(since the OSSE and GDAS weather differ), as is apparent
in Figure 4. This difference is only slightly compounded
by use of a random function to determine where OSSE
observations see through holes in clouds. The proper way
to compare the panels in Figure 4 is therefore to consider
their qualitative characteristics. This includes the typical
observation densities as well as the sizes of patches of
rejected observations. Ideally, this comparison should be
conducted by placing the OSSE result among, for example,
ten GDAS results for the same month, and then attempting to
discern which is the OSSE result. Given this figure, that task
should be sufficiently difficult. The number of assimilated
observations shown in Figure 4 for GDAS is 3% greater than
for the OSSE.

6.2. Contributions to cost function

Contributions to Jo for a 6 h assimilation period averaged
for July for various types of observations appear in Table 1
for both OSSE and GDAS results. For all radiance types,
corresponding values are within 5% of each other. For
conventional observations the agreement is typically less,
with the discrepancies mostly in the range 15–20% of
the GDAS values. A single exceptionally poor agreement
is for the SSWND, where the OSSE value is more than
three times the GDAS one and where further examination
reveals specifically that the QuikScat winds are the main
discrepancy. If the contributions to the sum of Jo excluded
these winds, the agreement between OSSE and GDAS values
would be within 2%.

6.3. Standard deviations of innovations

Values of Jo are convenient for comparing innovations
aggregated over observations with typical magnitude values
that vary greatly, since that metric normalizes each

Table 1. Mean numbers of observations assimilated and contributions to
Jo per 6 h period during July.

Obs. type Number Number Jo Jo

GDAS OSSE GDAS OSSE

Radiances
MSU 13464 14081 3563 3625
AMSU–A 231413 226903 34563 33546
AMSU–B 15556 15380 8783 8377
HIRS/2–3 68887 69171 17410 18999
AIRS 415746 394567 162474 156717
Conv. T
Sondes 10923 10872 20219 17546
Aircraft 30646 30394 32024 44877
Sfc. Marine 2387 2392 683 1090
Conv. wind
Sondes 28872 28559 48001 39763
Aircraft 69091 68634 88535 102156
SATWND 42900 42958 13153 14590
Sfc. Marine 4820 4844 3511 4936
SSWND 90636 90642 29468 102096
Prof./VAD 47677 48490 15306 11593
Conv. q
Sondes 5553 5443 3996 4168
Sfc. Marine 1011 1012 210 250
Conv. ps

Land 42168 42691 7301 6944
Ocean 4336 4167 1072 1138

Sum 1126086 1101200 495160 576373

contribution by its observation-error variance. In this
subsection, standard deviations of innovations are presented
for aggregates over more homogeneous data subsets.

Standard deviations for innovations of virtual tem-
perature (Tv), specific humidity (q) and eastward wind
component (u) for rawinsonde observations north of 20◦N,
appear in Figure 5 as functions of pressure for OSSE and
GDAS assimilations. Note that for almost all tropospheric
levels and fields, OSSE values are within a few per cent of
their GDAS counterparts. The only exceptions are for Tv at
925 hPa and for q below 600 hPa, where the discrepancies
are as large as 25%. The latter subset is not yet part of the
automated observation-error tuning process.

The standard deviations for v innovations of GOES IR
and visible winds (derived from tracking cloud features)
evaluated north of 20◦N also appear in Figure 5. This figure
shows discrepancies of less than 10%, except at 925 hPa for
which the sample size is small. Corresponding results for
u indicate almost no differences because the observation-
error parameters were tuned using the u discrepancies from
a previous experiment.

Statistics for other conventional observations (not shown)
display less agreement than those for rawinsondes and
cloud-tracked winds. This is mostly because less effort was
employed to tune their added observation-error statistics,
since they have less impact within the DAS than other
observations. The OSSE values for these types are generally
within 10% of their GDAS counterparts. The two exceptions
are SSM/I ocean-surface wind speeds, for which the OSSE
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Figure 3. For indicated channels of AIRS on AQUA, (a) mean numbers of observations assimilated per day and (b) standard deviations of innovations for
brightness temperatures (unit K). Filled and open circles are for OSSE and GDAS values, respectively. Channel designations are those of the renumbered
subset employed at NCEP, with values plotted only for channels actually employed in the DAS experiments.

statistics value is 25% greater than the GDAS value, and
QuikScat winds, for which the OSSE value is nearly double
the GDAS one. The reasons for these exceptions remain
unclear but will be investigated and corrected in future
experiments. The current discrepancy, however, is not
expected to impact the other results presented here greatly.

Standard deviations of Tb innovations for AIRS on AQUA
appear in Figure 3. The corresponding OSSE and GDAS
values are very similar. The only exceptions occur for
channels 44 and 66 (equivalent to AIRS designations 92
and 151, respectively), which are associated with very small
observation counts such that their differences are statistically
insignificant. Agreements for the other radiance instruments
and platforms not shown are like those for AIRS, or better.
The only exceptions are channels 9 and 14 on AMSU–A
on AQUA, for which the OSSE values are respectively 30%
larger and smaller than their GDAS counterparts.

6.4. Horizontal correlations of innovations

Observation innovations are generally horizontally corre-
lated because errors in xb are horizontally correlated due
to atmospheric and model dynamics. For some data types,
additional correlations are obtained because their instru-
ment plus representativeness errors are also horizontally
correlated. The GSI does not treat the latter correlations
explicitly (it is assumed R is diagonal) but simply inflates the
error variances assigned to observation types with assumed
highly correlated observation errors so as not to draw to
such types too strongly. Otherwise, the more correlated the
innovations are, the greater their net effect on the anal-
ysis increments. Essentially, weakly correlated innovations
in close proximity to one another will tend to cancel each
others’ influences on the analysis increment xa − xb as their
contributions are added according to the weights prescribed
by the K matrix as in (6). Since the GSI algorithm is
very effective at filtering spatially uncorrelated observation
errors, if simulated observation errors are too weakly cor-
related horizontally compared with their real counterparts
then the OSSE will tend to create less analysis error and less
subsequent background error. Thus, in order for the effects

of simulated observations to be similar to those of real ones,
it is important that the corresponding spatial correlations
be similar.

A sample of correlations of innovations for selected
observation types and channels or pressure levels are
presented in this subsection. The results are presented only
for particular geographical regions. Values are produced by
aggregating cross-products in bins of separation distances
(s). The nth bin includes distances 40(n − 1) < s ≤ 40n
for s measured in km. In the figures, the first two bins
are excluded because values for such close observations
are undersampled. For other bins, labelled distances are
their centre values of s. For conventional data, observations
with pressures within 2 hPa of the indicated pressures are
included in the correlation determinations.

Horizontal correlations of OSSE and GDAS innovations
for a sample of conventional observations appear in Figure 6.
These are all evaluated for the region north of 20◦N.

Results for GOES visible and IR winds at 300 hPa appear
in Figure 6(a). The two curves are very similar, with more
notable differences at s < 140 km and s > 500 km, although
in the latter range the values are less than 0.1 for both
results. Similar agreement is obtained for all other levels
in the range p < 850 hPa. It was necessary to correlate
the added observation errors in the OSSE to obtain such
agreement, otherwise the OSSE innovation correlations were
only small fractions of the GDAS results. An exception to this
good agreement appears in the result for 850 hPa shown in
Figure 6(b), where correlations for the OSSE are about half
those for the GDAS at the same distance. This discrepancy
reveals a failure of the automated tuning for the horizontal
observation-error correlation functions at this level. Results
for the northward wind component (v) are similar to those
for u at corresponding levels.

Representative results for rawinsondes also appear in
Figure 6. Correlations at short distances are less than
for GOES winds, presumably because the observational
errors themselves have little horizontal correlation and
are simulated with none. For Tv at 700 hPa, shown in
Figure 6(c), the remarkable agreement, along with the
good agreement of the corresponding innovation standard
deviations, suggests that the background-error correlations
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Figure 4. Locations of observations assimilated for the 6 h period centered on 1800 UTC on 12 July 2005 for channel 295 for the AIRS instrument on
the AQUA satellite for (top) the OSSE and (bottom) the GDAS.
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Figure 5. Standard deviations of innovations for (a) Tv, (b) q and (c) u for rawinsondes and (d) u for GOES winds north of 20◦N as functions of pressure
for the OSSE (filled circles) and GDAS (open circles). Units are K, g kg−1, m s−1 and m s−1, respectively.
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Figure 6. Horizontal correlations of innovations for OSSE (dashed lines) and GDAS (black lines) for GOES u winds near (a) 300 hPa and (b) 850 hPa
and rawinsonde (c) Tv at 700 hPa and (d) u at 850 hPa. All are evaluated for the globe north of 20◦N.

at this level are similar in the OSSE and GDAS since what
is shown here is primarily determined by those correlations.
As representative of wind throughout the troposphere, u
at 850 hPa is presented in Figure 6(d). For it, OSSE values
are about 70% of corresponding GDAS ones, although
all values are quite small. This discrepancy suggests that
the background-error correlations for wind may be weaker
in the OSSE than in the GDAS. These comments about
background-error correlations for Tv and wind are directly
suggested only for those well-observed regions where dense
rawinsonde observations exist.

As representative of horizontal innovation correlations
for radiance data, results for channels 5, 6 and 8 of AMSU–A
on NOAA–15 and channel 5 of HIRS–3 on NOAA–16 appear
in Figure 7. The results are typical to those for other channels
and instruments. The added OSSE observation errors for
all these included a small component that was horizontally
correlated.

6.5. Statistics of analysis increments

A major short-term goal guiding this work was to produce
better agreement between temporal standard deviations of
corresponding OSSE and GDAS analysis increments than
had been obtained for the previous NCEP OSSE (Errico
et al., 2007a). For that work, OSSE values for the northern
hemisphere were typically 30% larger than corresponding
values for the real DAS and corresponding values in
the southern hemisphere were 30% smaller, such that it
appeared that the hemispheres were interchanged in the
OSSE compared with the GDAS results!

In this subsection, all statistics are computed for only
the aggregate of 0000 and 1200 UTC analysis. These two
times differ from 0600 and 1800 UTC because the former
pair includes rawinsondes while the latter has very few.
By averaging over all times, effects of the rawinsondes will
thereby be diminished and appear less apparent.

The square roots of zonal means of the temporal variances
of analysis increments of T appear in Figure 8(a) and (b) for
both OSSE and GDAS. Note that structures of the two sets
of statistics are similar, with local maxima appearing close

to the same levels. The magnitudes for the OSSE, however,
are typically 5–10% smaller than GDAS ones at the same
locations.

The results of the same calculation, but applied to v,
appear in Figure 8(c) and (d). Here, differences are more
in the 10–20% range. The patterns are also more notably
different than for T. Near the South Pole, the OSSE has
values only slightly larger elsewhere over Antarctica, unlike
GDAS which has a global maximum. Similar comments
apply for the u-field statistics (not shown).

The corresponding results for q appear in Figure 8(e) and
(f). Note that, as for T, the OSSE and GDAS structures are
very similar. Also, the differences in magnitude are again
5–10%, except near 900 hPa near the Equator, where the
local minimum in the OSSE is approximately 20% of its
GDAS value.

As examples of zonal variability of the temporal standard
deviations of the analysis increments, OSSE and GDAS
values are presented for T near 850 hPa and u near
500 hPa in Figure 9. For T, local maxima appear at
isolated rawinsonde stations as well as in regions where
the rawinsonde and aircraft observation network is dense.
The local maxima do not appear at identical locations in
the OSSE and GDAS, although there are many common
locations such as at the rawinsonde stations along the coast
of Antarctica. For the u field shown, local maxima also
appear over many oceanic regions not associated with either
aircraft or rawinsonde reports, although there are still many
corresponding structures in the GDAS and OSSE results.
The same is true for both u and v throughout most of
the troposphere and for T above 500 hPa. Values for OSSE
results are typically smaller than GDAS ones, in agreement
with Figure 8.

Agreement between means of analysis increments in OSSE
and GDAS contexts should not be expected. Most sources of
bias have been omitted from the simulated observation
errors. Also, the analysis-error bias introduced due to
differences between the climatologies of the NR and GEOS–5
models need not be similar to the bias introduced in the
GDAS due to the difference between climatologies of the real
atmosphere and GEOS–5 model, unless the deficiencies in
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Figure 7. Horizontal correlations of innovations for OSSE (dashed lines) and GDAS (black lines) for channels (a) 5, (b) 6 and (c) 8 of AMSU–A on
NOAA–15 and (d) channel 5 of HIRS–3 on NOAA–16.

the NR model climatology are negligible by comparison. For
this statistic, therefore, qualitative agreement is sufficient,
i.e. typical magnitudes and perhaps horizontal scales.

The pairs of fields shown in Figure 10 are typical of
the agreements between temporal mean analysis increments
in the OSSE and GDAS. For the T fields near 850 hPa,
characteristic magnitudes and shapes of structures in the
fields appear very similar in the OSSE and GDAS. More
remarkable is the result that the two difference fields appear
highly correlated: many relative maxima and minima appear
in nearly the same locations. A similar degree of correlation
is observed for T at other tropospheric levels. Correlation,
to only a slightly lesser degree, is observed for the mean
u increments near 200 hPa also shown in Figure 10. These
correlations therefore suggest that the climatologies of the
real atmosphere and NR may be more like each other than
either is like that of GEOS–5.

6.6. Other results

In earlier experiments at the GMAO that had been performed
without applying any horizontal correlation for observation
errors, it was noticed that although the variances of
uncorrelated errors added to the simulated observations
could be tuned so that innovation variances obtained in
the OSSE matched those in the GDAS, variances of analysis
increments were always much weaker in the OSSE. In
a search for what missing characteristic of the simulated
errors could explain why one statistic but not the other
matched, spatial correlations of the observation innovations
were investigated. This revealed that while such correlations
for rawinsondes matched reasonably well, those for cloud-
tracked winds in particular, but also for AMSU–A (and
correlations between channels for AIRS), were all much
weaker in the OSSE. This weakness directly resulted in
diminished magnitudes of analysis increments, especially
over ocean areas where rawinsondes are absent.

The first validation studies performed for this present
GMAO OSSE system were conducted for the NR simulated
month of January. As for the July case, it was fairly

easy to match observation innovation standard deviations
somewhat. Horizontal correlations of observation errors for
SATWND and AMSU–A and channel correlations for AIRS
were also required to match GDAS observation-increment
correlations and to increase variances of analysis increments
better to match the corresponding GDAS values. None
of the matches, however, were as good as shown here
for July. In particular, the match of standard deviations
of analysis increments for January was fairly poor for
T in midlatitudes at midtropospheric levels. Validation
statistics based on forecast-skill scores, to be presented
in a separate report, revealed even less agreement. All these
January results suggested that both background and analysis-
error variances for the January simulation were significantly
under-represented, potentially invalidating the OSSE for
some intended applications. In an effort to understand
those initially disappointing results, the present July case
was examined.

7. Summary

Algorithms, software and datasets for generating a baseline
set of simulated observations for future OSSE experiments
have been produced at the GMAO. These are based on
the nature run provided by ECMWF for the ‘Joint OSSE’
project. They have been validated in the context of the
GMAO version of the NCEP/GMAO GSI DAS for July 2005.
Metrics discussed in this report include some statistics of
observation innovations and analysis increments within the
troposphere.

A simple procedure was developed for efficiently tuning
parameters that determine the simulated errors added to
the simulated observations so that some basic statistics
of observation innovations obtained in the OSSE closely
match the corresponding statistics in an assimilation of
real observations. In particular, for those observation types
on which the tuning was focused, the OSSE innovation
standard deviations were successfully induced to match
within a few per cent of their GDAS values. For all
radiance, SATWND and conventional surface observations,
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Figure 8. Square roots of zonal means of temporal variances of analysis increments of indicated fields and experiments. Units of K for T, m s−1 for v and
g kg−1 for q.

the standard deviations of these added errors were less than
the corresponding values specified for the observation-error
statistics in the DAS. For AIRS and SATWND observations,
the ratios of the corresponding deviations were typically
half or less. These tuning parameters are consistent with
the fact that (1) a portion of representativeness error is
already implicitly included in the simulated observations
because they were computed from data on a different grid
than employed in the DAS and (2) the standard deviations
specified as the DAS observational error statistics are inflated
for observations having errors strongly correlated either
horizontally or between channels.

In order to match the horizontal correlations of
observation innovations for some observation types, it was
necessary to create a horizontally correlated component
for a portion of the simulated added observation error.
This was also necessary to improve the agreement between
corresponding analysis-increment statistics in the GDAS and
OSSE, since innovation correlations profoundly affect the
error-filtering ability of the DAS algorithm. The observation

type with the largest fraction of horizontally correlated error
component (larger than 0.5 at most pressure levels) was
SATWND. A smaller fraction (typically 0.25) was required
for AMSU–A observations. No such correlated error was
added to other conventional observations. Simulated added
observation errors for AIRS were correlated between
channels for analogous reasons.

The result that parameters in the model simulating added
observation errors can be effectively tuned so that some
statistics of observation innovations can appear realistic is
useful, but alone is not strong evidence of OSSE validity.
First, the matching reported here is incestuous, in that the
same dataset is used to derive the error model parameters
as is used to validate the result. So, for example, if
the OSSE yields unrealistically weak contributions to the
observation innovation covariances by the background
errors for some reason, the procedure will successfully
inflate the observation-error component of the innovation
covariances as compensation. This is precisely what was
observed in the earlier GMAO OSSE validation studies
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Figure 9. Temporal standard deviations of analysis increments of indicated fields, experiments and η levels. Units of K for T and m s−1 for u.
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Figure 10. As in Figure 9 except for temporal means.

conducted for a January period. The covariances may be
matched, but not for the correct reasons. It is therefore
imperative to extend the validation to other statistics.

As a set of metrics describing the net effect of
all observations within the assimilation cycles, standard
deviations of analysis increments were examined. The OSSE

values were generally slightly weaker for most fields in
most regions compared with their GDAS counterparts.
Patterns of the fields of standard deviations were similar
otherwise, although local maxima did not actually coincide
except at some isolated rawinsonde stations. It is unclear
what characteristics of the observation innovations that
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determine the analysis increments remain poorly simulated,
since many statistics of the former are generally well-
matched. Insufficient model error, which in this context
means weaker differences in the formulations of the GEOS–5
and NR models compared with the differences between the
GEOS–5 model and real atmospheric dynamics and physics,
can explain the result.

Temporal mean values of analysis increments were
also examined. Corresponding values for many fields had
similar magnitudes and appeared highly correlated to each
other. This similarity of means also suggests that the NR
climatology that helps determine such means is more similar
to the atmosphere than the GDAS–5 climatology is. Since
these mean fields are determined in large part by systematic
errors in the DAS, particularly by forecast modelling errors,
this suggests that the GEOS–5 model error with respect to
atmospheric behaviour may be significantly greater than the
error in the NR model. While this cannot be concluded, it
must be hypothesized.

The results for this new baseline OSSE system are certainly
in better general agreement with results from assimilating
real observations than have been reported for past OSSE
validations. For some OSSE applications, especially those
concerned with qualitative assessments, the present baseline
may be quite adequate. It is also an appropriate initial
baseline from which to measure improvements in new
baseline datasets to be produced. The largest discrepancies
of statistics in this study concern observations that have
little demonstrated impact on the analysis, such as for
QUIKSCAT and SSM/I ocean-surface winds. The present
results therefore suggest the OSSE’s utility but also the
difficulties in producing an OSSE that validates adequately.

Given the importance of spatial and channel correlations
of observation error, several improvements should be
made to the present error-simulation model. Other
spectral shape functions defining the horizontal correlations
should be considered. Also a more appropriate but still
computationally efficient way to introduce horizontal and
vertical (or channel) correlations simultaneously should
be developed, with a re-tuning of all correlation model
parameters.

Simulations of observations and added error for some
observation types also need improvement. Although
QUIKSCAT will be dropped from future baseline sets of
observations, the problems with it suggest that further
effort is required for any similar observations. Although
for this study the locations of SATWND observations do
not necessarily coincide with trackable features in the nature
run, this neglect will be corrected in the near future. Also, the
OSSE will be extended to include most present observation
types.

Future reports concerning the development of baseline
sets of observations for the GMAO OSSE will include addi-
tional metrics not discussed here. Impacts of observation
subsets on forecast skill will primarily be compared (Privé
et al., 2012) by using estimates provided by adjoints of the
assimilation and forecast system (Langland and Baker, 2004;
Gelaro and Zhu, 2009). Although this latter approach has
additional limitations not present in the data denial one
(Gelaro and Zhu, 2009), it can present a more detailed pic-
ture than is computationally feasible otherwise. Also, a study
of analysis error in the OSSE context is currently under way,
made possible by the fact that in such experiments the truth
is given precisely by the nature run.
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Appendix A. The radiance-affecting cloud-presence model

For several reasons stated in the main text, the algorithm
indicating the presence of radiance-affecting clouds is kept
simple here. The only cloud information from the NR used
is the cloud fractional coverage f in the NR grid boxes
specified for high, mid and low levels. At each observation
location, the algorithm considers these levels in succession,
stopping if any cloud effect is obtained.

For each of the three levels j, the probability Pj that a
cloud is affecting some radiance channels is defined using a
simple, piecewise linear function of fj:

Pj =




0. if fj ≤ a,
0.5(fj − aj)/(bj − aj) if aj < fj ≤ bj,
0.5 + 0.5(fj − bj)/(cj − bj) if bj < fj < cj,
1. if fj ≥ cj,

where aj, bj, cj are parameters to be tuned to yield the desired
QC-accepted observation counts. Corresponding to each
determined value of Pj, a random number rj is drawn from a
uniform distribution on the interval 0 ≤ rj ≤ 1. An affecting
cloud is declared present if rj < Pj. In that case, the cloud-top
pressure defining the effective radiative surface is assigned
to be pc = σjps, where ps is the true surface pressure at that
location and σj is another tuning parameter.

For MW instruments, the same procedure is used except
that the three cloud fractions are replaced by the convective
and stratiform precipitation rates at the surface. The values
of precipitation rates and cloud fractions used in these
calculations are actually those spatially and temporally
interpolated to observation locations, the same as for other
NR fields. Values of a, b, c are identically set to 0.001 (metres
of water per m2 area per three-hour period) with σ set to
0.7 and 0.85 for convective and stratiform precipitation,
respectively. Values of the tunable parameters for HIRS and
AIRS appear in Table A1.

Appendix B. The procedure for tuning explicit observation
error parameters

The variances of added errors for the OSSE are tuned so that
innovations of the same type and pressure level or channel
have similar variances V in both the GDAS and OSSE. In the
GDAS,

Vt = Rt + diag
(

HBtH
T
)

, (B1)

where H and HT are the tangent linear and adjoint versions
of H, Bt is the true background-error covariance and Rt is
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Table A1. Parameters used for determining the presence of clouds affecting
simulated IR radiance observations for the OSSE.

Instrument j Level a b c σ

AIRS 1 high 0.10 0.40 0.70 0.35
AIRS 2 mid 0.15 0.25 0.35 0.65
AIRS 3 low 0.20 0.25 0.30 0.85
HIRS 1 high 0.10 0.40 0.70 0.35
HIRS 2 mid 0.15 0.15 0.15 0.65
HIRS 3 low 0.20 0.20 0.20 0.85

the true observation-error variance. These may differ from
the corresponding covariances specified in the DAS. In fact,
for SATWND and hyper-spectral instruments such as AIRS,
the innovation variances are less than a quarter of the value
of corresponding elements of R, because the latter have been
inflated to mitigate negative effects in the DAS due to its
neglect of observation-error correlations.

In contrast, in the OSSE,

Vo = Re + Ri + diag
(

HBoHT
)

, (B2)

where Re and Ri are the variances of observation errors
added explicitly and representativeness errors introduced
implicitly, respectively, and Bo is the actual (rather than
specified) background-error covariance realized in the
OSSE. The Ri values arise because the NR and DAS grids
and the CRTM versions used to create and assimilate
observations differ.

The background errors obtained in the DAS are
determined by forecast model error and propagated analysis
errors. The latter are partly determined by observation
errors. Therefore, Bo in (B2) should be an implicit function
of the observation-error statistics. Without knowing this
function, it not obvious how to adjust trial values of Re to
obtain a desired value of Vo.

Fortunately, it was observed in early tuning experiments
that the portion of Vo due to background errors did not
change much as Re was reasonably varied. By assuming
that Ri and Bo are unchanged, a simple tuning algorithm
was used very successfully. An updated estimate of Re

is determined from a previous experiment that yielded
innovation variances Ṽo produced using added errors having
variances R̃e:

Re = Vt − Ṽo + R̃e. (B3)

In our experience, at most two iterations of this procedure
were required to obtain Vt ≈ Vo as presented in this report.

Additional parameters required to create horizontally
correlated added observation errors were specified by
fitting Gaussian-shaped functions to computed horizontal
correlations of innovations for each observation instrument
and channel or level as functions of horizontal separation
s (i.e. assuming isotropy). The fitting is weighted in s
to emphasize better fits for medium distances that are
expected to have greater impact on DAS results (because
not many observations of the same type are very close
together and combinations of widely separated observations
receive little weight in the DAS). The Lh for the added OSSE
errors are specified as the corresponding values obtained
from fitting GDAS results. The fitting also provides an

extrapolation of the correlation to separation distance s = 0
(as in Hollingsworth and Lonnberg, 1986) that yields a
fraction γ of variance for the correlated part of d, including
both background and observation-error components, to the
total variance. The ratios of variances for correlated versus
total error to be added are then estimated as

νe = Vtγt − Ṽo + R̃e

Re
, (B4)

where the subscript t indicates target values provided by
the GDAS results. The quantity in the numerator in (B4) is
simply an estimate of the desired variance for the correlated
part of the observation error to be added based on the GDAS
and previous OSSE results.

Appendix C. Power spectra of the horizontally correlated
random fields determining observational errors

The horizontal correlation model for added observational
errors is defined as

r = exp
(−0.5s2/L2

h

)
, (C1)

where s is the great-circle separation distance on the sphere
and Lh is the desired horizontal length-scale. The error
statistics are assumed to be geographically independent. As
shown in Weaver and Courtier (2001), the expected power
spectrum, triangularly truncated at wave number N, for
random fields on the sphere approximately having such
correlations is

Pn = β(2n + 1) exp [−0.5a−2L2
h(n2 + n)] , (C2)

where Pn is the power for spherical harmonics of order
n = 0, . . . , N, a is the Earth’s radius and β is the factor that
yields the desired global-mean variance V :

β = V

(
N∑

n=0

Pn

)−1

. (C3)

Random spherical harmonic coefficients cm
n of zonal wave

number m = 0, . . . , N and n = m, . . . , N are determined
consistently with this expected power spectrum by setting
cm

n = cr + ici, where i = √−1 and cr and ci are random
variables drawn separately for each m and n from
distributions with 0 mean and variances (4n + 1)Pn. The
factor before Pn here is the number of real or imaginary
components (excluding the imaginary ones defined for
m = 0 that are constrained to be zero-valued) for a
given n, including those implied for m = −N, . . . , −1.
The latter inclusion is necessary because coefficients cm

n =
c−m∗

n , where the asterisk indicates a complex conjugate,
are implied to constrain the random fields to be
real-valued.
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